Kamis, 05 Juni 2025

Selamat Hari Raya Idul Adha 1446 H / 2025 M

Selamat Hari Raya Idul Adha 1446 H / 2025 M


Momen Idul Adha (Udhiyah : hewan sembelihan)

bukan sekadar perayaan, melainkan merupakan refleksi atas keteladanan agung dari Nabi Ibrahim AS dan Nabi Ismail AS. Kisah beliau mengajarkan kita tentang makna sejati berkurban (Qaruba : mendekatkan diri) berupa pengorbanan ego terhadap sesuatu yang dicintai, dalam rangka menumbuhkan rasa empati, kepedulian sosial, serta melatih kesabaran dalam menghadapi ujian hidup.


Bersamaan dengan peringatan Hari Raya Haji, kita juga mengenang sejarah panjang pembangunan Ka'bah sebagai refleksi ketakwaan dan ketaatan Nabi Ibrahim AS kepada Sang Pencipta. Semoga perjalanan spiritual para jemaah haji menjadi amalan yang baik dan inspiratif bagi seluruh umat manusia di dunia.



Rabu, 02 April 2025

Selamat Hari Raya Idul Fitri 1446 H 🌙✨

 


Tahun 2025 ini, Idul Fitri terasa lebih istimewa dan penuh berkah. Momen buka bersama terakhir di bulan Ramadan bertepatan dengan ulang tahun anak pertama buah hati kami pada 30 Maret, menjadikannya perayaan yang semakin bermakna. Kami merayakannya di kampung halaman bersama keluarga besar.

Lebaran kali ini juga terasa lebih panjang dengan cuti liburan selama 11 hari, yang mana liburan yang termasuk panjang dibandingkan tahun-tahun sebelumnya. Waktu liburan ini bisa dimanfaatkan untuk menghabiskan momen kebersamaan, silaturahmi, dan merayakan hari raya bersama sanak famili.


Selamat Hari Raya Idul Fitri 1446 H 🌙✨


Mohon maaf lahir dan batin, semoga kebahagiaan ini terus menyertai kita semua.✨


#IdulFitri1446H

#Lebaran2025

#Ramadhan1446H

#LiburanLebihLama













Senin, 08 Juli 2024

Pengalaman Studi Banding Orthognatic Surgery (OGS) di RSUP Hasan Sadikin Bandung

Kali ini, saya berkesempatan melakukan studi banding di sebuah rumah sakit ternama yang terkenal dengan keahliannya dalam melakukan orthognatic surgery (OGS). kesempatan untuk melakukan studi banding di RS Hasan Sadikin Bandung adalah sebuah pengalaman yang tak ternilai. Tujuan utama saya adalah untuk memperdalam pengetahuan dan keterampilan dalam bidang orthognatic surgery (OGS), khususnya dalam menghadapi variasi kasus dan teknik yang mungkin belum pernah saya temui sebelumnya.























Memulai Studi Banding

Perjalanan kami diawali dengan perijinan melalui Komkordik Diklat RSUP Hasan Sadikin, yang memudahkan kami untuk memperoleh akses masuk ke dalam instalasi bedah sentral di rumah sakit tersebut.

Setibanya di RSUP Hasan Sadikin, kami langsung diarahkan ke KSM Bedah Mulut dan Maksilofasial. Di sini, kami disambut dengan hangat oleh para sejawat dokter seperti Dokter Asri, Dokter Seto, Dr. Kalia, dan Dr. Melita. Mereka dengan antusias berbagi pengalaman dan pengetahuan, memberikan kami wawasan baru tentang sistem kerja dan fasilitas yang tersedia.


Pengalaman Operasi dan Teknik

Selama studi banding, saya ikut terlibat belajar metode terbaru antara lain


induce hypotension and dry operative field. Teknik ini digunakan untuk mengurangi perdarahan selama operasi sehingga lapangan bedah tetap kering dan pandangan dokter bedah menjadi lebih jelas


Teknik operasi yang efektif agar hasil optimal  bagi pasien didapatkan dari modifikasi teknik yang biasa saya ketahui sebelumnya orthognatic surgery (OGS)

1. Melepas dan Mengidentifikasi Konka Nasalis dari Maksila

2. Identifikasi Dinding Mukosa Sinus jangan sampai ruptur

3. Membuat Lubang Horizontal Tunneling di Spina Nasalis

4. Menjahit dan Menyatukan Kembali Konka Nasalis pada maksila

5. Identifikasi Lingula Mandibula

sebagai batas tepi foramen mandibula, tempat masuknya arteri, vena, dan nervus alv inferior. Identifikasi ini krusial untuk menghindari kerusakan pada struktur vital tersebut.

6. Garis Potong Tulang

Garis potong tulang ditempatkan 2-3 mm di atas lingula. Teknik ini merupakan variasi dari metode konvensional yang biasanya menggunakan garis potong 2-3 mm di bawah incisura mandibula.

7. Down Fracture dengan Hook dan Rowe

8. Penggunaan Bur Fissure, Reciprocal Bone Saw dan Channel Retractor

9. Fiksasi Mandibula dan Pemasangan Plat

10. Memotong Kelebihan Tulang di Ramus Mandibula



Diskusi dan Sharing Pengalaman


Dalam sesi observasi operasi, saya menyaksikan bagaimana tim bedah bekerja dengan sangat terkoordinasi. Mereka mempersiapkan pasien, merencanakan setiap langkah operasi, dan menjalankan prosedur dengan presisi tinggi. Benar saja, dalam kurun waktu beberapa jam, operasi orthognatik yang melibatkan dua rahang selesai dengan sukses. Saya terkesima melihat bagaimana tim ini bisa bekerja dengan sangat cepat namun tetap memastikan semua aspek prosedur berjalan sempurna


Idiom "2 Jaw Before Lunch" bukan hanya sekadar kata-kata motivasi, tetapi juga menggambarkan dedikasi, keahlian, dan efisiensi yang tinggi dari para ahli bedah ortognatik. Saya pulang dengan semangat baru dan pengetahuan yang lebih dalam tentang OGS, serta inspirasi untuk terus belajar dan berkembang dalam karir saya sebagai dokter bedah mulut


Fasilitas dan Prasarana

Selama berada di RS Hasan Sadikin, saya juga mengamati dan mempelajari referensi fasilitas sarana dan prasarana yang ada di KSM Bedah Mulut dan Maksilofasial. Fasilitas yang lengkap dan modern tentu sangat mendukung keberhasilan setiap prosedur operasi. Saya sangat terkesan dengan ketersediaan berbagai alat canggih dan ruang operasi yang dirancang sedemikian rupa untuk mendukung keselamatan dan kenyamanan pasien.


Kesimpulan

Studi banding di RSUP Hasan Sadikin Bandung adalah pengalaman yang sangat berharga bagi saya. Tidak hanya menambah pengalaman dan pengetahuan saya dalam orthognatic surgery (OGS), tetapi juga memberikan banyak inspirasi untuk terus mengembangkan diri dan meningkatkan kualitas pelayanan di tempat kerja saya.


saya yakin bahwa kami bisa memberikan perawatan yang lebih baik dan efisien bagi pasien-pasien kami


Terima kasih kepada seluruh tim di RS Hasan Sadikin Bandung yang telah memberikan kesempatan dan pengalaman berharga ini. Sampai jumpa di lain kesempatan!


Semoga kesempatan seperti ini dapat terus dilakukan untuk memperkuat kolaborasi dan meningkatkan kualitas pendidikan di Indonesia.

Senin, 22 Januari 2024

"Kolaborasi yang Menginspirasi: Sinergi Antara Departemen Bedah Mulut dan Maksilofasial serta Departemen Orthodonsia FKG Unair"


Dalam upaya meningkatkan kualitas perawatan kasus bedah orthognatik, Fakultas Kedokteran Gigi (FKG) dan Rumah Sakit Gigi dan Mulut (RSGM) Universitas Airlangga (Unair) telah merintis kolaborasi yang menjanjikan. Diskusi intens mengenai indikasi bedah orthognatik yang dapat ditangani di RSGM Unair menjadi poin penting dalam perjalanan kolaboratif ini.


Melalui forum diskusi, para praktisi dan ahli bedah mulut dan maksilofasial berbagi pengalaman serta pengetahuan mendalam mengenai penatalaksanaan kasus indikasi bedah orthognatik. Setiap kasus diuraikan dengan detail, mempertimbangkan berbagai faktor seperti kompleksitas dan kebutuhan spesifik pasien.


Tak hanya itu, kesepakatan yang disaksikan oleh Pejabat FKG Unair - Wakil Dekan 1 Bidang Akademik, Prof. Dr. Ira Widyastuti, drg. MS., Sp.KG(K) dan Wakil Dekan 2 Bidang Bidang Sumber Daya Manusia dan Keuangan, Andra Rizqiawan, drg., Ph.D., Sp.BMM(K) adalah untuk menjalin kolaborasi dalam merawat kasus-kasus indikasi bedah orthognatik telah disepakati dengan penuh semangat. Langkah ini menandai komitmen bersama untuk memberikan pelayanan terbaik bagi pasien, dengan menggabungkan keahlian dan sumber daya yang ada di FKG dan RSGM Unair.


Dengan kolaborasi yang solid dan sinergis, diharapkan perawatan kasus-kasus bedah orthognatik di FKG & RSGM Unair dapat memberikan hasil yang optimal serta membuka jalan bagi inovasi dan peningkatan mutu layanan kedepannya.


Sumber referensi


https://jatim.tribunnews.com/2019/01/11/mengenal-bedah-ortognatik-bisa-perbaiki-kelainan-susunan-tulang-rahang-simak-penjelasan-dokter


https://www.suarasurabaya.net/kelanakota/2019/RSGM-Unair-Berhasil-Melakukan-Operasi-Bedah-Rahang-Pertama/


https://unair.ac.id/rsgm-unair-sukses-lakukan-operasi-bedah-rahang-pertama/

Rabu, 18 Oktober 2023

Type of Manuscript:

Review

 

A Scoping Review on The Effectiveness of Bone Regeration Procedures Using Bovine Bone Block Grafts: A Summary of 20 Years of Research Experience

 

Reza A. Fessi1*, Coen P. Danudiningrat2, Anita Yuliati3, Prasiddha M.E. Fadhlallah4

1Post Graduate Doctoral Program, Faculty of Dental Medicine, Airlangga University, Surabaya, Indonesia / Jl. Mayjen Prof. Dr. Moestopo No.47, Surabaya, East Java, Indonesia, 60132 / reza.al.fessi@fkg.unair.ac.id / Fax. +62315030255; Tel. +62315030255

2Department of Oral and Maxillofacial Surgery, Faculty of Dental Medicine, Airlangga University, Surabaya, Indonesia / Jl. Mayjen Prof. Dr. Moestopo No.47, Surabaya, East Java, Indonesia, 60132 / coen-p-d@fkg.unair.ac.id / Fax. +62315030255; Tel. +62315030255

3Department of Dental Material, Faculty of Dental Medicine, Airlangga University, Surabaya, Indonesia / Jl. Mayjen Prof. Dr. Moestopo No.47, Surabaya, East Java, Indonesia, 60132 / anita-y@fkg.unair.ac.id / Fax. +62315030255; Tel. +62315030255

4Residency Program of Oral and Maxillofacial Surgery, Faculty of Dental Medicine, Airlangga University, Surabaya, Indonesia / Jl. Mayjen Prof. Dr. Moestopo No.47, Surabaya, East Java, Indonesia, 60132 / prasiddha.mahardhika.el-2018@fkg.unair.ac.id / Fax. +62315030255; Tel. +62315030255

 

 

 

 

 

 

 

 

*Corresponding author:

Post Graduate Doctoral Program,

Faculty of Dental Medicine,

Airlangga University,

Jl. Prof. Dr. Moestopo No.47, Surabaya, East Java, Indonesia.

E-mail address: reza.al.fessi@fkg.unair.ac.id

Tel: +62315030255; Fax: + 62315030255.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ABSTRACT:

As a practical and safe substitute for autologous transplants, xenografts and alloplastic bone substitutes are available. Numerous research projects conducted at numerous research centers in various parts of the world have investigated the efficacy of these products. The purpose of the investigation is to determine whether bovine bone blocks are efficient as regenerative bone replacement treatments, specifically whether they are effective in both in vivo and in vitro tests as bone substitutes. A total of 235 publications were found through an electronic search of the Pubmed, Scopus, Science Direct, and Google Scholar databases. Evaluation of complications at the implant site is low (n=13) with only one study showing 8.9% implant failure, 30% unhealthy implant (n=4) and a complication rate of 12.5% with the most common complications being dehiscence, bruising and oedema (n=3). The most commonly used parameter in most studies was vertical bone gain (n=26), with a mean VBG of 4.5 mm and new bone formation (n=11), with a mean NFB of 14.5%, indicating adequate integration between graft and host bone. The resorption rate (n=6) was found to be 22% on average or approximately 2.7 mm over a 4 month to 3 year observation period. Bovine blocks can serve as a useful bone graft substitute in regenerative surgery and are improved by the addition of BMP-2, PDGF and collagen membrane.

 

KEYWORDS: Bone regeneration, Bovine bone block, Xenograft,, Bone subtitute, Regenerative surgery


 

INTRODUCTION :

Bone regeneration in maxillofacial defects, which often caused by bone resection due to benign and malignant tumors, trauma, and osteoradionecrosis, is a challenge in oral and maxillofacial surgery.1,2,3 Bone reconstruction in maxillofacial regions need surgical, material, and biochemistry approach. Autograft is gold standard for bone defect reconstruction because its optimum biological properties including osteogenic, osteoconductive, and osteoinductive. Beside those benefits, it has high complication on donor site.4,5,6,7

 

Different techniques were used depending on the type of defect (horizontal/vertical)8,9, local anatomy (maxilla/mandibula, anterior/posterior region)10,11, defect size and rehabilitation plan12,13,14. Because they are carefully regulated to minimize patient morbidity during donor harvesting, xenografts and alloplastic bone substitutes constitute an effective and secure substitute for autologous grafts15,16,17. Numerous investigations conducted in various research institutes across the globe have assessed the efficacy of these products. This study was conducted in stages, beginning with cell culture tests conducted in vitro, moving on to investigations conducted in vivo using animal models, and concluding with studies involving humans.

 

Studies in histology and morphometry at the microscopic level are able to demonstrate how the bone responds to the graft and provide reliable data on the graft's behavior, the resorption process, bone formation, and the long-term assessment of the regenerated tissue. Furthermore, these methods have been implemented using many techniques, such as Radiography, Histological staining, Scanning Electron Microscopy (SEM), Energy Dispersive X-Ray (EDX), Fourier Transform Infrared (FTIR), Enzyme-linked immunisorbent assay (ELISA), and Micro-CT Scan, to investigate the physicochemical and biological processes, as well as the surface characterisation of biomaterials. This scientific approach aims to increase the predictability of the procedure in the selection of the ideal scaffold shape (particulates/blocks), surgical technique and graft manipulation and stabilization methods. The purpose of this review was to elucidate the effectiveness of several procedures for jaw regeneration using different types of bovine bone grafts.18,19

 

MATERIALS AND METHODS:

For research screening, the electronic databases PubMed, Scopus, Science Direct, and Google Scholar were utilized. Specific keyword: bovine bone block graft, cortico-cancellous bovine bone xenograft,  jawbone regeneration, maxillofacial bone regeneration, Bio-Oss® AND jaw bone regeneration, Cerabone® AND jaw bone regeneration, paper then filtered through a qualitative and quantitative selection.

 

Inclusion Criteria

The research published between 2002 to October 2022 were only reviewed in English. The publications focusing to bovine bone substitute and scaffold for maxillofacial bone regeneration were a limitation of the study. Barrier membrane usage was not subject to any limitations during the course of the organized research procedure. The in vitro and in vivo research as well as reports were considered as part of the inclusion criteria. Off-topic publications weren't included in the analysis. The papers were then divided into groups based on the type of surgery and the study methodology.

 

Selection of the Studies

Reviewers who were qualified and subject matter experts independently screened the study's data and analysis. Every abstract of the discovered papers was evaluated as the first step of screening after a preliminary check on the research title. It was possible to access the complete texts of the included papers, and they were also categorized for the qualitative synthesis. The electronic database research has discovered a total of 235 manuscripts. 148 papers were taken into consideration for the full-text review after 87 duplicates were eliminated from the screening. 11 full texts not found and 96 full texts found out of topic to be exclude.  Finally, 41 papers in all have been incorporated into the analytical synthesis.

 

Description of the Bovine Bone Block Graft

Figures below (Figure 1) show the properties and clinical applications of various bovine bone block materials used and cited in selected publications (Table 1). To attain the optimum handling and osteogenic properties for the optimal regeneration outcome, specific formulations have been created for each clinical application. Successful bone grafting depends on factors like biocompatibility, chemical resemblance to autologous bone, progressive degradation of bone matrix through the development of new bone, and osteogenic potential. These elements are essential for the success of bone regeneration procedures that can be further enhanced by this xenograft.20,21,22

 

Figure 1. PRISMA Flowchart of the study design and manuscript-selection process.

 

Table 1. Various bovine bone block materials used. 20,21,22

 

Bone Block Product Used

Product

Processing

Survival rate

Size

Clinical Application

: Bio-Oss

: Demineralized Bovine cancellous/spongious bone

: Over 95%

: 20 x 10 x 10 mm

: Alveolar Bone Regeneration, Implant Placement Preparation, Mandibular Defect Reconstruction

Product

Processing

Survival rate

Size

Clinical Application

: Orthogen

: Lyophilized or freeze dried bovine medullary bone

: Over 93%

: 10 x 10 x 10 mm and preshaped fit to defect.

: Calvarial bone defect, alveolar bone regeneration.

Product

Processing

 

 

Survival rate

Size

Clinical Application

: NuOss

: Chemical extraction process and heat treatment to remove the organic components of the bone. Composite comprised of 80% anorganic bovine bone and 20% type I bovine collagen.

: 96%

: 1 mm

: In vitro characterization, Calvarial bone defect and Mandibular defect regeneration

Product

Processing

 

 

Survival rate

Size

Clinical Application

: Straumann Xenograft

: Completely removed the organic components by solvent and temperature treatment (> 500 °C) and handling with low temperature (non-sintered).

: 95%

: fit to defect

: Alveolar Bone Regeneration

Product

Processing

 

Survival rate

Size

Clinical Application

: Sticky Bone

: Bovine xenograft (Bio-Oss) mixed with human autogenous bone graft

: 98%

: fit to defect

: Alveolar Bone Regeneration

Product

Processing

Survival rate

Size

Clinical Application

: SmartBone

: Deproteinized bovine bone block with various size and shape

: 97%

: fit to defect (around 20 x 10 x 10 mm)

: Alveolar Bone Regeneration

Product

 

Processing

Success rate

Size

Clinical Application

: Freeze Dried Bovine Bone Block (FDBB) or Lyophilized Bovine bone Mineral Block (LBMB)

: Freeze dry or Lyophilized

: 95%

: 10 x 5 x 5 mm

: In vitro characterization, Calvarial bone defect and Mandibular defect regeneration

 

RESULT:

The table below shows the key outcomes of each bovine bone block xenograft biomaterial when used either individually or in combination. (Table 2 and Table 3).

 

Table 2. Bone regeneration procedures with bovine bone block xenograft: Alveolar Bone Regeneration (ABR) and Implant Placement (IP)

Reference

Clinical Indication

Biomaterial

Result

Felice et al., 201742

ABR and IP
(Animal study)

Bio-Oss

Bovine bone block has the highest mean vertical adjustment than autogenous and equine bone block after 3 to 5 month healing. Bovine bone block has higher implant failure (8.9%) but not significant to autogenous (5.6%) and equine (4.0%).

Mean height increase is 5.48 mm in bovine with mean adjustment 1.26 mm higher than equine (0.92 mm) and autogenous (1.06).

Li et al., 201343

ABR
(Clinical study)

Bio-Oss

Consistently, subperiosteal tunneling from bovine bone block resulted in new bone growth. On top of the graft material, bone was directly implanted. Height measurements of the level of bone augmentation varied from 4.1 to 6.0 mm.

Mirković et al., 201544

ABR
(Clinical study)

Custom 3D printing bovine xenograft

The specially designed grafts were easy to implant during surgery and closely matched the contour of the bone abnormalities. Block measurements were 36.7 x 14.2 x 12 mm, and they were applied to patients whose ridges had lost more than 20 x 3 x 2 mm. The operation took less time thanks to the contour matching, and the defect healed properly as a result.

Ortiz-VigĂłn et al., 201845

ABR and IP
(Clinical study)

Bio-Oss

The average increase in ridge width was 4.12 +/-1.32 mm. A total of 35.7% of soft tissue dehiscence occurred throughout the course of the follow-up at various points in time. A high frequency of early implant loss (30.8%) was also observed.

Chen, 202045

ABR
(Animal study)

Bio-Oss

Decellularized porcine bone xenograft has higher new bone formation (3.7 : 2.2 mm) and bone bridging (3.7 : 1.7 mm), but less amount of fluorescent labeling than those of the Bio-Oss

Felice et al., 201346

ABR and IP
(Clinical study)

Bio-Oss

With the use of a block of collagenated bovine bone measuring 35 x 10 x 5 mm and five-millimeter implants, augmented bone was successfully created. Since short implants fixation is a quicker, less expensive, and less morbid alternative to bone augmentation, it may be desirable in posterior mandibles.

Simion, 200735

ABR (Clinical study)

Bio-Oss with rhPDGF

The basal bone had merged with the bovine block. In histological analysis, the entire bovine bone block trabeculae were totally integrated with the newly formed bone, resulting in an 8 mm vertical increase. A deproteinized bovine bone block and PDGF can be used to successfully augment severely atrophic ridges vertically.

Antunes et al., 201547

 

 

IP
(Animal study)

Bio-Oss

DBBM block presented the highest volume of porosity (Block 74.24%, Sponge 54.63%, Granules 53.44%) . Bone repair is greater in DBBM sponges and granules when inserted to fill up between bone defect and implant.

Borgia et al., 202241

ABR and IP
(Clinical study)

Bio-Oss with collagen membrane

Alveolar ridge changes, periimplant clinical parameters, and patient satisfaction did not differ between DBBM with collagen membrane and a block of bone from the tuberosity. Autologous 86.7%, DBBM 62.5% of healthy implants. Periimplant mucositis and periimplantitis were not observed. DBBM 2.57mm mean pocket depth; autologous 2.87mm

Cardaropoli, 200936

ABR and IP
(Clinical study)

Bio-Oss with rhPDGF

after tooth extraction, vertical ridge augmentation on a 9 mm defect utilizing rhPDGF and DBBM block. After six months, the transplanted bovine bone had fully assimilated with residual basal bone, forming bone-like tissue. The radiographic examination of the implant revealed stability, no periimplantitis, and a satisfactory integration of the bovine xenograft with the remaining basal bone as well as ideal bone-to-implant contact.

Schwarz et al., 201048

ABR
(Animal study)

Bio-Oss

Bone ingrowth consistently higher in Equine Bone Block than Bovine but not significant. Newly formed on bovine bone  was 13.78%, lower than equine 28.7%. Both are not had an adverse clinical or histopathological reaction which lead to failure.

Bashara et al., 201249

ABR
(Animal study)

Bio-Oss and compared to membrane addition

In micro-CT sections, there are no significant differences between the crests of the buccal and lingual bones. Both inside and outside of the titanium granules, new bone formation was observed, whereas six months after placement in the bovine bone scaffold, newly formed bone was discovered surrounding the block.

Alayan and Ivanovski, 201839

ABR
(Clinical study)

Bio-Oss with type 1 collagen matrix

Bone volume and greater bone contact generated after bovine bone block with collagen treatment on maxillary sinus bone defect. Similar result with bovine bone block plus autogenous bone group.

Additional vertical augmentation found 10% from samples treated with bovine block with collagen. Do not significant differences on outcome of bone graft volume (1.46 cm without collagen, 1.27 with collagen). Ridge increase 3.13 on ABBM+AB while 3.04 on ABBM+C.

Zang et al., 201749

In vitro and in vivo (Animal study)

Chitosan + Bovine Xenograft, hJBMMSCs

Pore size, porosity, and water absorption are all increased with a higher percentage of chitosan in the scaffold material, while compressive strength is decreased. In contrast to other groups in rat calvarial defects, the CS/BDX (40:60) scaffold seeded with hJBMMSCs was the most successful in promoting new bone formation as demonstrated by improved histomorphometry data, a larger new bone area, and more visible mature lamellar bone formation. 8 weeks post implantation

Felice et al., 200951

ABR
(Clinical study)

Bio-Oss

The bovine was less invasive and may be preferred, however both bovine bone block xenograft and autograft obtained good results.

Lee, 201738

ABR
(Clinical study)

Straumann Xenograft + rhPDGF-BB

Subperiosteal minimally invasive aesthetic ridge augmentation technique (SMART) prevents the morbidities, complication, and soft tissue disfigurements caused by invasive flap technique while providing consistently increased bone volume and greater predictability. With an average gain in ridge width of 5.11 mm, the SMART approach using bovine xenograft and PDGF offers excellent results.

Victor, 201152

ABR
(Clinical study)

Deproteinized bovine bone + PDGF

Deproteinized bovine bone with PDGF-BB appears to induce stronger bone formation and rapid wound closure, promoting the development and maintenance of bone and gingival forms important for achieving an esthetic implant.

Talebi and Janbakhsh, 201953

ABR
(Clinical study)

Cerabone block

Bone gain means after augmentation is 4.4 mm in width and 4.2 mm in height. Histological evaluations found that the xenograft were integrated into the newly formed bone.

Nevins et al., 200937

ABR
(Clinical study)

Bio-Oss and rhPDGF-BB

Inorganic bovine bone graft carriers and freeze-dried bone allografts proved to be good scaffolds for the delivery of recombinant human platelet-derived growth factor BB for ridge augmentation with minimally invasive techniques.

Naruse et al., 201054

ABR
(Clinical study)

Anorganic deproteinized bovine bone

After a 9-month augmentation, there were no statistically significant differences in the histomorphometric examination of autogenous bone, DFDBA, HA, calcium phosphate, and anorganic deproteinized bovine bone material. 15 x 10 mm bone augmentation achieved after operation.

Barbu et al., 202155

ABR
(Clinical study)

Sticky bone

(Bovine xenograft +

Autograft)

Sticky bone (80% autogenous and 20% bovine xenograft) resulting sufficient crestal width increase to perform horizontal ridge augmentation. Average ridge width gain was 3.7 mm, the bone shell technique performed higher width gain 3.7 mm.

Cristalli et al., 202029

ABR
(Clinical study)

Smartbone

The graft blocks' flexibility to be customized decreased surgical invasiveness and shortened procedure times. After six months, histological examination revealed the presence of newly formed bone, and CBCT examination demonstrated adequate integration between the transplant and recipient site. No indications of inflammation or bone resorption were seen at the 2-year control.

Messo et al., 202029

ABR
(Clinical study)

Smartbone

The accuracy, lack of infection or rejection, and overall clinical outcome of SmartBone® on Demand are demonstrated by very long-term volume stability recorded over 7 years of follow-up as well as histologically by the formation of new, healthy bone via a full remodeling process following an 8-month healing period.

Teng et al., 202033

ABR and IP
(In vitro and Animal study)

DBB with BMP-2

In comparison to unloaded blocks (6.45 mm) and blocks with adsorbed BMP-2 (6.03 mm), the DBB blocks with coating-delivered BMP-2 considerably improved the efficacy of alveolar bone augmentation (8.04 mm).

Thoma et al., 201932

ABR
(Clinical study)

DBBM block with rhBMP-2

The ridge width was successfully increased by both the autogenous bone block and the DBBM block with rhBMP-2. 6.86 mm compared. 7.13 mm for the median RW, respectively. Resorption caused the ridge width to increase to 5.35 mm from 5.15 mm after 4 months.

Bienz et al., 202134

ABR and IP

(Clinical study)

Bio-Oss with BMP-2

23 patients with 40 implants were assessed after the third year. In both groups, the implant survival rate was 100%. Marginal hard tissue levels were 0.4 mm in the BMP group and 0.7 mm in the ABB group at baseline. These values were 0.2 mm (BMP) and 0.6 mm (ABB) at 3 years. At the time of the baseline measurement, the buccal hard tissue measured 1.1 mm (BMP) and 1.4 mm (ABB) thick at the level of the implant shoulder. At 3 years, it was 0.9 mm (BMP) and 0.7 mm (ABB) in size.

Mordenfeld et al., 201456

ABR
(Clinical study)

Bio-Oss mixed with autogenous bone

After 7.5 months, the 60:40 mixture compared to 90:10 considerably increased the alveolar crest's mean width by 3.5 (1.3) mm and 2.9 (1.3) mm, respectively.

Benic et al., 201957

ABR
(Clinical study)

Bio-Oss particulate vs block

After six months of healing, block bone replacement used for GBR of peri-implant deficiencies was superior to particle bone replacement in terms of the dimension of the augmented hard tissue. In the block group, the horizontal thickness decreased to 2.90 mm (mean: 2.71) and in the particulate group, to 0.2 mm (mean: 0.52).

Schmitt et al., 201358

ABR
(Clinical study)

Straumann®

BoneCeramic, Bio-Oss®, Puros®, and

autologous bone.

The gold standard for sinus floor augmentation remains to be AB. BCP, ABB, AB, and MCBA all had new bone formation measurements of 30.28 ± 2.16%, 24.9±5.67%, 41.74 ± 2.1%, and 35.41 ±  2.78%, respectively.

Bohner 201659

ABR
(Clinical study)

Orthogen with stereolithographic model for shaping

Clinical evaluation at 9 months revealed healthy, highly vascularized bone to support dental implants (3.8 mm x 11.5 mm), and radiographic examinations at 7 years revealed the preservation of bone structure.

 

Table 3. Bone regeneration procedures with bovine bone block xenograft: Mandibular Defect Reconstruction (MDR) and Implant Placement (IP)

Reference

Clinical Indication

Biomaterial

Result

Hernández-Alfaro et al., 201259

MDR and IP
(Clinical study)

Bio-Oss

Mandibular reconstruction with bone block xenograft mixed with recombinant BMP-7 and stem cells achieve sufficient quantity and quality of new bone formation to allow implant placement with reduced patient morbidity and surgical time compared to conventional reconstruction methods.

Soares et al., 201960

MDR
(Animal study)

Bio-Oss and orthogen

After 6 months, it was impossible to visually tell the difference between the graft and host in the rabbit mandibular defect treated with LBMB grafts due to their clear integration with the neighboring host cortical bone.

Zang et al., 201750

Calvarial bone defect
(Animal study)

Chitosan + Bovine Xenograft + hJBMMSCs

Critical size calvarial bone defect in rats showed significantly highest bone volume, trabecular thickness, and trabecular number on Chitosan + Bovine Xenograft + hJBMMSCs.

Veis et al., 201561

MDR
(Animal study)

Bio-Oss

In the block-shaped group, the mean values of graft area (GA) were slightly higher at 37% vs. 31% and new bone area (NBA) was slightly higher at 9.68% vs. 5.71%, while the mean values of maximum vertical height (MVH) and bone to graft contact (BGC) were more substantial in the particulate group at 78.78% vs. 83.22% and 35.13% vs. 39.22%, respectively.

Paknejad et al., 201462

MDR
(Animal study)

Bio-Oss and NuOss

Both the NuOss and the Bio-Oss exhibit comparable physicochemical properties. In order to stimulate bone regeneration, deproteinized bovine bone can be employed as a scaffold in bone defects. The percentage of new bone was comparable after four weeks (16%) but higher after eight weeks (NuOss 25% vs. BioOss 23%).

Al-Rasheed et al., 201663

Calvarial bone defect
(Animal study)

NuOss with BMSCs

In the bone graft + BMSC + CM group, bone volume and bone mineral density as well as new bone formation were all shown to be significantly greater. The best quality and quantity of NFB were produced when adjunct BMSCs were used with bone transplant and CM for guided bone regeneration in standardized rat calvarial lesions. 13 mm bonegraft only, 17.75 mm bonegraft + CM, and 19.52 mm bonegraft + BMSCS + CM NFB on 24 weeks. All groups displayed 5 mm NFB at 4 weeks, and after 8 weeks, 9.3 mm bonegraft alone, 10 mm bonegraft + CM, and 11.34 mm bonegraft + BMSC+CM.

Durual et al., 202140

Calvarial bone defect
(Animal study)

Bio-Oss® Collagen

Saline soaking ensures qualitative bone tissues growths, quicker regeneration kinetics, and simplified handling.  It should make it possible to standardize clinical protocols and could be an alternative to conventional blood pre-treatment. As compared to blood pre-treatment, new bone growth on DBBM with NaCl 0.9% was noticeably higher within the first month (3.4% vs. 2%)

Gehrke, Mazón, Pérez-Díaz, et al., 201964

In vitro characterization

Orthogen Bone (sintered)

Lumina Bone (non sintered)

Sintered bovine bone block showed bigger pores (500-700nm vs 200-400nm), slightly higher total porosity (20.21% vs 19.28%), similar compressive strength (x̄ 450N) also viability and proliferation of cells (x̄ 0.2-0.4)

Gehrke, MazĂłn, Del Fabbro, et al., 201964

Calvarial bone defect
(Animal study)

Orthogen Bone (deproteinization)

Lumina Bone (non sintered)

6mm diameter and 5mm high bovine bone block screwed onto rabbit calvarial bone. After 8 weeks, sintered bovine bone has lower bone resorption (10% vs 25%) and neo formation (12.86% vs 16.10%) than non sintered bovine bone.

Kamal et al., 202265

Mandibular bone defect
(Animal study)

Cerabone, Bio-Oss, Autogenous,

Histological analysis after 12 weeks demonstrated bone healing pattern in grafting site, same with what was seen in the CBCT images. Osseous shell technique successful to treat mandibular defect on mice.

Nugraha et al., 202366

In vitro

FDBB plus hUCMSCs

Compared to dc-FDBB and DBBM, FDBB demonstrated a greater capability for both osteoinductive and osteogenic activity. FDBB showed higher RUNX2 (0.55 and 2.43)

Montessory et al., 202224

In vitro

FDBB

Damaged osteocyte cell remnants were visible under the microscope with HE scaffold FDBB labeling, however these remnants were not visible with dc-FDBB and DBBM.

 

DISCUSSION:

Bovine bone block xenograft is a type of bone graft material which widely used in oral surgery to promote bone regeneration in areas where there is insufficient bone to support dental implants or other prosthetic devices, also on maxillofacial bone defect.23 This type of bone graft material is created from cow bones that have undergone processing and sterilization to eliminate all organic material and any potential pathogen-transmitting sources. The resulting bone block is then cut to size and shape for use in specific surgical procedures. Majority it derived from femur bone of cows, although it can also be sourced from other bovine bones such as the tibia or the iliac crest.24

 

During a bone graft procedure using bovine bone block xenograft, the material is placed into the site where new bone growth is needed. Bovine bone block xenograft gradually integrates with the patient's own bone tissue by acting as a scaffold for new bone cells to develop and adhere to. However, as with any medical procedure, there may be some risks or complications associated with the use of this material, and patients should always discuss the potential benefits and risks of any treatment with their healthcare provider.23,25

 

A recent study published in the Journal of Materials Science: Materials in Medicine in 2020 examined the composition and microstructure of bovine femur bone used for xenografts. The study found that the cortical bone from the femur of bovine is an ideal source for producing bone graft materials due to its high mineral content, low organic content, and excellent biomechanical properties. The study also noted that the processing and sterilization methods used to prepare the bovine bone block xenograft can have an impact on the material's properties, and emphasized the importance of strict quality control measures to ensure the safety and efficacy of these grafts.26,27,28

 

To meet various surgical requirements, bovine bone block is offered in a range of shapes and sizes. The size of the bone block can have an impact on the graft's outcome because while larger blocks may offer more structural support, they may also take longer to integrate with the patient's own bone tissue.29,30 The size of bovine bone blocks widely used in dental implant procedures ranged from 5 mm x 5 mm x 5 mm to 15 mm x 10 mm x 10 mm. The study found that larger bone blocks tended to result in higher rates of implant success, but also noted that the size of the bone block should be tailored to the specific needs of each patient and surgical site. Larger bovine bone blocks (10 mm x 10 mm x 10 mm) resulted in greater bone formation and integration than smaller blocks (5 mm x 5 mm x 5 mm), particularly when used in combination with other bone graft materials.31

 

Evaluations performed at the graft site on the host after treatment with bovine bone block xenograft demonstrated low rates of complications and failure (Table 4). Of the 13 journals searched that reported graft complications, 5 of them showed no complications at all. While others reported minimal complications that only one study shown implant failure 8.9%, not healthy implant mean (n=4) 30%, and 12.5% complication rate (n=3). The most complication found is dehiscence, bruising, and oedema.

 

Table 4. Summary of Bone Graft Parameters

Parameters

Publication (n)

Result

Finding

Clinical Complication

13

8.9 % Failure

Low complication

Vertical Bone Gain

26

4.5 mm

Adequate bone gain

Newly Formed Bone

11

14.5 %

Good bone integration

Resorption Rate

6

22% or 2.7mm

Biocompatible for host

 

Table 5. Additional osseointegration factor on bone graft and its effect

Additional factors

Publication (n)

Finding

MSCs

4

Higher NFB, and RUNX-2

PDGF

4

Only slightly higher VBG (mean (4.53mm)

BMP

3

Higher VBG (mean 7mm)

Collagen

4

Slightly higher NFB (3.4%)

 

Clinical parameters vertical bone gain (VBG) and newly formed bone (NFB) are the most used for evaluating treatment success. VBG is important because alveolar ridge augmentation is the most case in oral and maxillofacial surgery because of its vertical defect should be solved for next dental treatment like implant or denture. Mean vertical bone gain (n=26) is 4.5 mm with newly formed bone (n=11) 14.5% of total bone in grafting area. These result indicates that all previous research that we found showed adequate integration between graft and host bone.

Resorption rate of a bone graft material is an important factor in assessing its biocompatibility and long-term success. The optimum bone graft material should have a resorption rate that is equal to the rate of new bone growth. If the graft material resorbs too quickly, it may not provide adequate structural support for the newly forming bone, leading to compromised stability and integration. On the other hand, if the graft material resorbs too slowly, it may impede the remodeling and replacement of the graft with new host bone. Rapid or excessive resorption may trigger an inflammatory response or adverse tissue reactions, while slow resorption can lead to prolonged immune responses or complications such as infection. Resorption rate (n=6) found in 4 month until 3 years observation with mean 22% or found approximately 2.7mm.

 

Bovine Bone Block Xenograft Treatment Success Increased by Addition of BMP-2, PDGF, and Collagen Membrane (Table 5). Studies have suggested that the success rate of bovine bone block xenograft procedures may be improved by the addition of growth factors and/or a collagen membrane to the graft site. These materials can help to promote bone growth and integration and may enhance the overall effectiveness of the bone graft procedure. The study found that the use of this combination of materials resulted in significantly higher rates of implant success and bone formation compared to the use of bovine bone block xenograft alone.70

 

BMP-2 addition shows greater success rate on bovine bone block treatment32,33,34. A powerful osteogenic growth factor that is essential for bone regeneration and repair is bone morphogenetic protein 2 (BMP-2). By promoting the development of mesenchymal stem cells (MSCs) into osteoblasts, the cells responsible for bone production, BMP-2 has been found to improve osteogenesis on bovine bone block. When BMP-2 is applied to bovine bone block, it initiates a signaling pathway that promotes the recruitment and differentiation of MSCs to the site of the graft. These MSCs then differentiate into osteoblasts, which begin to lay down new bone tissue and integrate the bovine bone block with the surrounding bone. Additionally, BMP-2 has been shown to enhance the production of extracellular matrix proteins, such as collagen and osteopontin, which are essential components of bone tissue. These proteins serve as a support for the growth of new bone and aid in maintaining the graft site's stability. 67,68,69

 

PDGF increase bone formation on defect site treated with bovine bone block35,36,37,38. By promoting the proliferation and development of mesenchymal stem cells (MSCs), which are the cells responsible for bone production, PDGF is known to promote osteogenesis on bovine bone blocks70,71. By establishing a physical barrier that limits the infiltration of soft tissue, encouraging the migration and proliferation of osteogenic cells, and promoting the formation of extracellular matrix proteins, collagen membrane can greatly improve osteogenesis on bovine bone block grants.39,40,41

 

CONCLUSION:

The appropriate size of bovine bone block xenograft for a particular patient and surgical site will depend on a variety of factors, including the amount of bone loss, the location of the graft, and the specific goals of the procedure. Additional osteogenic factors such as BMP-2 and PDGF also collagen membrane on the operative site can provide better output after treatment. For best results, dental practitioners must thoroughly assess each patient's particular needs and choose the proper size and shape of bone graft material.

 

CONFLICT OF INTEREST:

The authors have no conflicts of interest regarding this investigation.

 

REFERENCES:

1.    Chim H, Salgado CJ, Mardini S, Chen HC. Reconstruction of mandibular defects. Semin Plast Surg. 2010 May;24(2):188-97. doi: 10.1055/s-0030-1255336.

2.    Sudarmono, Widyaputra S, Sitam S, Suherna I, Fitri AD, Rachman A. Comparison of Bone regeneration in hADMSC Versus hUCBMSC with hBMMSC as a Reference: A Literature Review of Potential Bone Regeneration. Research Journal of Pharmacy and Technology. 2021; 14(4):1993-8.

3.    Kamel R, El-Wakil NA, Elkasabgy NA. Injectable hydrogel scaffolds composed of Nanocellulose derived from sugarcane bagasse and combined with calcium for Bone regeneration. Research Journal of Pharmacy and Technology 2023; 16(7):3439-0.

4.    Ganta GK, Alla RK, Cheruvu K, Guduri BR. Bone Grafts: An Overview of Bone Remodeling, Types and Recent Advances. Research Journal of Pharmacy and Technology. 2021; 14(11):6101-5.

5.    Prahasanti C, Perdana S. The Roles of Insulin Growth Factors-1 (IGF-1) in Bone Graft to increase Osteogenesis. Research Journal of Pharmacy and Technology. 2022; 15(4):1737-2.

6.    Kribaa OK, Zenkhri L, Boutarfaia A, Benamour L, Chahbaoui N. Elaboration and Physicochemical characterization of a Biomaterial for Bone Substitution. Asian Journal of Research in Chemistry. 2022; 15(1):71-6.

7.    Oryan A, Monazzah-Harsini S. Characteristics of the Main Constituents Used in Bone Tissue Engineering. EC Orthopaedics 9.3 (2018): 105-114.

8.    Chavda S, Levin L. Human Studies of Vertical and Horizontal Alveolar Ridge Augmentation Comparing Different Types of Bone Graft Materials: A Systematic Review. J Oral Implantol. 2018 Feb;44(1):74-84. doi: 10.1563/aaid-joi-D-17-00053.

9.    Ramanauskaite A, Roccuzzo A, Schwarz F. A systematic review on the influence of the horizontal distance between two adjacent implants inserted in the anterior maxilla on the inter-implant mucosa fill. Clin Oral Implants Res. 2018 Mar;29 Suppl 15:62-70. doi: 10.1111/clr.13103.

10.  Scarano A, Lorusso F, Santos de Oliveira P, Kunjalukkal Padmanabhan S, Licciulli A. Hydroxyapatite Block Produced by Sponge Replica Method: Mechanical, Clinical and Histologic Observations. Materials (Basel). 2019 Sep 21;12(19):3079. doi: 10.3390/ma12193079.

11.  Al-Moraissi EA, Alkhutari AS, Abotaleb B, Altairi NH, Del Fabbro M. Do osteoconductive bone substitutes result in similar bone regeneration for maxillary sinus augmentation when compared to osteogenic and osteoinductive bone grafts? A systematic review and frequentist network meta-analysis. Int J Oral Maxillofac Surg. 2020 Jan;49(1):107-120. doi: 10.1016/j.ijom.2019.05.004.

12.  Chin VK, Shinagawa A, NaclĂ©rio-Homem Mda G. Bone healing of mandibular critical-size defects in spontaneously hypertensive rats. Braz Oral Res. 2013 Sep-Oct;27(5):423-30. doi: 10.1590/S1806-83242013000500006.

13.  Scarano A, Assenza B, DI Cerbo A, Candotto V, Santos DE Oliveira P, Lorusso F. Bone regeneration in aesthetic areas using titanium micromesh. Three case reports. Oral Implantol (Rome). 2017 Jan 21;10(4):488-494. doi: 10.11138/orl/2017.10.4.488.

14.  Gehrke SA, MazĂłn P, Del Fabbro M, Tumedei M, AramburĂş JĂşnior J, PĂ©rez-DĂ­az L, De Aza PN. Histological and Histomorphometric Analyses of Two Bovine Bone Blocks Implanted in Rabbit Calvaria. Symmetry. 2019; 11(5):641. https://doi.org/10.3390/sym11050641

15.  Testori T, Wallace SS, Trisi P, Capelli M, Zuffetti F, Del Fabbro M. Effect of xenograft (ABBM) particle size on vital bone formation following maxillary sinus augmentation: a multicenter, randomized, controlled, clinical histomorphometric trial. Int J Periodontics Restorative Dent. 2013;33(4):467-475. doi:10.11607/prd.1423.

16.  van de Vijfeijken SECM, MĂĽnker TJAG, Spijker R, et al. Autologous Bone Is Inferior to Alloplastic Cranioplasties: Safety of Autograft and Allograft Materials for Cranioplasties, a Systematic Review. World Neurosurg. 2018; 117: 443-452. e8. doi:10.1016/j.wneu.2018.05.193.

17.  Tumedei M, Savadori P, Del Fabbro M. Synthetic Blocks for Bone Regeneration: A Systematic Review and Meta-Analysis. Int J Mol Sci. 2019;20(17):4221. Published 2019 Aug 28. doi:10.3390/ijms20174221.

18.  Bano N, Jikan SS, Basri H, Adzila S. XRD and FTIR study of A&B type carbonated hydroxyapatite extracted from bovine bone. February 2019, AIP Conference Proceedings 2068(1):020100. doi: https://doi.org/10.1063/1.5089399.

19.  Bruma, A. (Ed.). (2020). Scanning Transmission Electron Microscopy: Advanced Characterization Methods for Materials Science Applications (1st ed.). CRC Press. https://doi.org/10.1201/9780429243011

20.  Rombouts C, Jeanneau C, Camilleri J, Laurent P, About I. Characterization and angiogenic potential of xenogeneic bone grafting materials: Role of periodontal ligament cells. Dent Mater J. 2016;35(6):900-907. doi:10.4012/dmj.2016-005

21.  Giuliani A, Iezzi G, Mazzoni S, Piattelli A, Perrotti V, Barone A. Regenerative properties of collagenated porcine bone grafts in human maxilla: demonstrative study of the kinetics by synchrotron radiation microtomography and light microscopy [published correction appears in Clin Oral Investig. 2022 May;26(5):4241]. Clin Oral Investig. 2018;22(1):505-513. doi:10.1007/s00784-017-2139-6.

22.  Jeanneau C, Le Fournis C, About I. Xenogeneic bone filling materials modulate mesenchymal stem cell recruitment: role of the Complement C5a. Clin Oral Investig. 2020;24(7):2321-2329. doi:10.1007/s00784-019-03087-5.

23.  Moussa NT, Dym H. Maxillofacial Bone Grafting Materials. Dental clinics of North America. 2020; 64(2):473-90. doi:10.1016/j.cden.2019.12.011.

24.  Montessory M, Kamadjaja DB, Sumarta NPM, Rizqiawan A, Rahman MZ. Freeze-Dried Bovine Bone as Xenogenic Scaffold: Does Decellularization Lower Its Antigenic Potential? Journal of International Dental and Medical Research 202215(4), 1486-1491.

25.  Moy PK, Aghaloo T. Risk factors in bone augmentation procedures. Periodontol 2000. 2019;81(1):76-90. doi:10.1111/prd.12285.

26.  Graziani G, Govoni M, Vivarelli L, Boi M. Application to Bone Grafts and Nanostructured Biomimetic Coating. Coatings 2020, 10(6):522.

27.  Pereira HF, Cengiz IF, Silva FS. Scaffolds and coatings for bone regeneration. J Mater Sci: Mater Med 31, 27 (2020). https://doi.org/10.1007/s10856-020-06364-y.

28.  Amid R, Kheiri A, Kheiri L, Kadkhodazadeh M, Ekhlasmandkermani M. Structural and chemical features of xenograft bone substitutes: A systematic review of in vitro studies. Biotechnol Appl Biochem. 2021;68(6):1432-1452. doi:10.1002/bab.2065.

29.  Cristalli MP, La Monaca G, Pranno N, Annibali S, Iezzi G, Vozza I. Xeno-Hybrid Composite Scaffold Manufactured with CAD/CAM Technology for Horizontal Bone-Augmentation in Edentulous Atrophic Maxilla: A Short Communication. Applied Sciences. 2020; 10(8):2659. https://doi.org/10.3390/app10082659

30.  Messo E, Grottoli CF, Perale G, Hirsch J-M. Custom-Made Horizontal and Vertical Maxillary Augmentation with Smartbone® On Demand: A Seven-Year Follow-Up Case. Applied Sciences. 2020; 10(22):8039. https://doi.org/10.3390/app10228039.

31.  Pallesen L, Schou S, Aaboe M, Hjørting-Hansen E, Nattestad A, Melsen F. Influence of particle size of autogenous bone grafts on the early stages of bone regeneration: a histologic and stereologic study in rabbit calvarium. Int J Oral Maxillofac Implants. 2002;17(4):498-506.

32.  Thoma DS, Bienz SP, Payer M, et al. Randomized clinical study using xenograft blocks loaded with bone morphogenetic protein-2 or autogenous bone blocks for ridge augmentation - A three-dimensional analysis. Clin Oral Implants Res. 2019;30(9):872-881. doi:10.1111/clr.13492.

33.  Teng F, Wei L, Yu D, Deng L, Zheng Y, Lin H, et al. Vertical bone augmentation with simultaneous implantation using deproteinized bovine bone block functionalized with a slow delivery of BMP-2. Clin Oral Implants Res. 2020;31(3):215-228. doi:10.1111/clr.13558.

34.  Bienz SP, Payer M, Hjerppe J, HĂĽsler J, Jakse N, Schmidlin PR, et al. Primary bone augmentation leads to equally stable marginal tissue conditions comparing the use of xenograft blocks infused with BMP-2 and autogenous bone blocks: A 3D analysis after 3 years. Clin Oral Implants Res. 2021;32(12):1433-1443. doi:10.1111/clr.13843.

35.  Simion M, Rocchietta I, Dellavia C. Three-dimensional ridge augmentation with xenograft and recombinant human platelet-derived growth factor-BB in humans: report of two cases. Int J Periodontics Restorative Dent. 2007 Apr;27(2):109-15. PMID: 17514882.

36.  Cardaropoli D. Vertical ridge augmentation with the use of recombinant human platelet-derived growth factor-BB and bovine bone mineral: a case report. Int J Periodontics Restorative Dent. 2009 Jun;29(3):289-95. PMID: 19537468.

37.  Nevins ML, Camelo M, Nevins M, Schupbach P, Friedland B, Camelo JM, et al. Minimally invasive alveolar ridge augmentation procedure (tunneling technique) using rhPDGF-BB in combination with three matrices: a case series. Int J Periodontics Restorative Dent. 2009 Aug;29(4):371-83. PMID: 19639058.

38.  Lee EA. Subperiosteal Minimally Invasive Aesthetic Ridge Augmentation Technique (SMART): A New Standard for Bone Reconstruction of the Jaws. Int J Periodontics Restorative Dent. 2017;37(2):165-173. doi:10.11607/prd.3171

39.  Alayan J, Ivanovski S. A prospective controlled trial comparing xenograft/autogenous bone and collagen-stabilized xenograft for maxillary sinus augmentation-Complications, patient-reported outcomes and volumetric analysis. Clin Oral Implants Res. 2018;29(2):248-262. doi:10.1111/clr.13107.

40.  Durual S, Schaub L, Mekki M, Manoil D, Martinelli-Kläy CP, Sailer I, et al. Pre-Treat Xenogenic Collagenous Blocks of Bone Substitutes with Saline Facilitate Their Manipulation and Guarantee High Bone Regeneration Rates, Qualitatively and Quantitatively. Biomedicines. 2021 Mar 17;9(3):308. doi: 10.3390/biomedicines9030308.

41.  Borgia GS, Pebe P, Barbot R, Haas AN. Immediate implants with buccal defects filled with bone from the tuberosity or a xenograft: 1-year randomized trial. Brazilian Oral Research 2022, 36, pp. 1–13.  doi: 10.1590/1807-3107BOR-2022.VOL36.0102.

42.  Felice P, Barausse C, Barone A, Zucchelli G, Piattelli M, Pistilli R, et al. Interpositional Augmentation Technique in the Treatment of Posterior Mandibular Atrophies: A Retrospective Study Comparing 129 Autogenous and Heterologous Bone Blocks with 2 to 7 Years Follow-Up. Int J Periodontics Restorative Dent. 2017 Jul/Aug;37(4):469-480. doi: 10.11607/prd.2999.

43.  Li J, Xuan F, Choi BH, Jeong SM. Minimally invasive ridge augmentation using xenogenous bone blocks in an atrophied posterior mandible: a clinical and histological study. Implant Dent. 2013;22(2):112-116. doi:10.1097/ID.0b013e3182805bec.

44.  Mirković S, Budak I, Puskar T, Tadic A, Sokac M, et al. Application of modern computer-aided technologies in the production of individual bone graft: A case report. Vojnosanitetski Pregled 2015, 72(12), pp. 1126–1131. doi:10.2298/VSP140915117M.

45.  Ortiz-VigĂłn A, Suarez I, MartĂ­nez-Villa S, Sanz-MartĂ­n I, Bollain J, Sanz M. Safety and performance of a novel collagenated xenogeneic bone block for lateral alveolar crest augmentation for staged implant placement. Clin Oral Implants Res. 2018;29(1):36-45. doi:10.1111/clr.13036

46.  Felice P, Piana L, Checchi L, Corvino V, Nannmark U, Piattelli M. Vertical ridge augmentation of an atrophic posterior mandible with an inlay technique and cancellous equine bone block: a case report. Int J Periodontics Restorative Dent. 2013;33(2):159-166. doi:10.11607/prd.1098.

47.  Antunes AA, Grossi-Oliveira GA, Martins-Neto EC, Almeida AL, Salata LA. Treatment of circumferential defects with osseoconductive xenografts of different porosities: a histological, histometric, resonance frequency analysis, and micro-CT study in dogs. Clin Implant Dent Relat Res. 2015;17 Suppl 1:e202-e220. doi:10.1111/cid.12181

48.  Schwarz F, Ferrari D, Balic E, Buser D, Becker J, Sager M. Lateral ridge augmentation using equine- and bovine-derived cancellous bone blocks: a feasibility study in dogs. Clin Oral Implants Res. 2010;21(9):904-912. doi:10.1111/j.1600-0501.2010.01951.x

49.  Bashara H, Wohlfahrt JC, Polyzois I, Lyngstadaas SP, Renvert S, Claffey N. The effect of permanent grafting materials on the preservation of the buccal bone plate after tooth extraction: an experimental study in the dog. Clin Oral Implants Res. 2012;23(8):911-917. doi:10.1111/j.1600-0501.2011.02240.x

50.  Zang S, Zhu L, Luo K, Mu R, Chen F, Wei X, et al. Chitosan composite scaffold combined with bone marrow-derived mesenchymal stem cells for bone regeneration: in vitro and in vivo evaluation. Oncotarget. 2017;8(67):110890-110903. Published 2017 Dec 5. doi:10.18632/oncotarget.22917

51.  Felice P, Marchetti C, Iezzi G, Piattelli A, Worthington H, Pellegrino G, et al. Vertical ridge augmentation of the atrophic posterior mandible with interpositional bloc grafts: bone from the iliac crest vs. bovine anorganic bone. Clinical and histological results up to one year after loading from a randomized-controlled clinical trial. Clin Oral Implants Res. 2009;20(12):1386-1393. doi:10.1111/j.1600-0501.2009.01765.x

52.  Victor, P. 2011. auGmentatIon ProCeDureS WItH reComBInant Human reComBInant PLateLet-DerIVeD GroWtH FaCtor BB For tHe HorIZontaL anD VertICaL JaW reConStruCtIon, Chirugie OMF, pp. 19–23. Available at: https://ibn.idsi.md/sites/default/files/imag_file/7.Augmentation procedures with recombinant.pdf.

53.  Talebi M, Janbakhsh N. Combined use of xenogenous bone blocks and guided bone regeneration for three-dimensional augmentation of anterior maxillary ridge: A case series. J Adv Periodontol Implant Dent. 2019;11(2):94-98. Published 2019 Dec 18. doi:10.15171/japid.2019.015.

54.  Naruse K, Fukuda M, Hasegawa H, Yagami K, Udagawa N. Advanced alveolar bone resorption treated with implants, guided bone regeneration, and synthetic grafting: a case report. Implant Dent. 2010;19(6):460-467. doi:10.1097/ID.0b013e3181fce1a9.

55.  Barbu HM, Iancu SA, Rapani A, Stacchi C. Guided Bone Regeneration with Concentrated Growth Factor Enriched Bone Graft Matrix (Sticky Bone) vs. Bone-Shell Technique in Horizontal Ridge Augmentation: A Retrospective Study. J Clin Med. 2021;10(17):3953. Published 2021 Aug 31. doi:10.3390/jcm10173953.

56.  Mordenfeld A, Johansson CB, Albrektsson T, Hallman M. A randomized and controlled clinical trial of two different compositions of deproteinized bovine bone and autogenous bone used for lateral ridge augmentation. Clin Oral Implants Res. 2014;25(3):310-320. doi:10.1111/clr.12143.

57.  Benic GI, Eisner BM, Jung RE, Basler T, Schneider D, Hämmerle CHF. Hard tissue changes after guided bone regeneration of peri-implant defects comparing block versus particulate bone substitutes: 6-month results of a randomized controlled clinical trial. Clin Oral Implants Res. 2019;30(10):1016-1026. doi:10.1111/clr.13515.

58.  Schmitt CM, Doering H, Schmidt T, Lutz R, Neukam FW, Schlegel KA. Histological results after maxillary sinus augmentation with Straumann® BoneCeramic, Bio-Oss®, Puros®, and autologous bone. A randomized controlled clinical trial. Clin Oral Implants Res. 2013;24(5):576-585. doi:10.1111/j.1600-0501.2012.02431.x

59.  Hernández-Alfaro F, Ruiz-Magaz V, Chatakun P, Guijarro-MartĂ­nez R. Mandibular reconstruction with tissue engineering in multiple recurrent ameloblastoma. Int J Periodontics Restorative Dent. 2012;32(3):e82-e86.

60.  Soares MQS, Van Dessel J, Jacobs R, et al. Morphometric evaluation of bone regeneration in segmental mandibular bone defects filled with bovine bone xenografts in a split-mouth rabbit model. Int J Implant Dent. 2019;5(1):32. Published 2019 Sep 10. doi:10.1186/s40729-019-0187-1.

61.  Veis A, Dabarakis N, Koutrogiannis C, Barlas I, Petsa E, Romanos G. Evaluation of Vertical Bone Regeneration Using Block and Particulate Forms of Bio-Oss Bone Graft: A Histologic Study in the Rabbit Mandible. J Oral Implantol. 2015;41(3):e66-e72. doi:10.1563/AAID-JOI-D-13-00241.

62.  Paknejad M, Rokn AR, Yaghobee S, Moradinejad P, Heidari M, Mehrfard A. Effects of two types of anorganic bovine bone on bone regeneration: a histological and histomorphometric study of rabbit calvaria. J Dent (Tehran). 2014;11(6):687-695.

63.  Alahmari F, Al-Rasheed A, Ramalingam S, Aldahmash AM, et al. (2016) Efficacy of Mesenchymal Stem Cells as Adjunct to Guided Bone Regeneration in Standardized Calvarial Defects in Rats: An In Vivo Microcomputed Tomographic and Histologic Analysis, The International Journal of Periodontics & Restorative Dentistry, 36(January), pp. s23–s37. Available at: https://doi.org/10.11607/prd.2319.

64.  Gehrke SA, MazĂłn P, PĂ©rez-DĂ­az L, et al. Study of Two Bovine Bone Blocks (Sintered and Non-Sintered) Used for Bone Grafts: Physico-Chemical Characterization and In Vitro Bioactivity and Cellular Analysis. Materials (Basel). 2019;12(3):452. Published 2019 Feb 1. doi:10.3390/ma12030452.

65.  Kamal M, Al-Obaidly S, Lethaus B, Bartella AK. A novel pilot animal model for bone augmentation using osseous shell technique for preclinical in vivo studies. Clin Exp Dent Res. 2022;8(6):1331-1340. doi:10.1002/cre2.644

66.  Nugraha AP, Kamadjaja DB, Sumarta NPM, et al. Osteoinductive and Osteogenic Capacity of Freeze-Dried Bovine Bone Compared to Deproteinized Bovine Bone Mineral Scaffold in Human Umbilical Cord Mesenchymal Stem Cell Culture: An In Vitro Study [published online ahead of print, 2023 Jan 4]. Eur J Dent. 2023;10.1055/s-0042-1758786. doi:10.1055/s-0042-1758786.

67.  Kumar MPS, Devishree. Role of Bone Morphogenic Protein 3 in the regulation of Bone Growth and Development. Research J. Pharm. and Tech. 2018; 11(3): 1251-1254.

68.  Kumar MPS, Priyanka S, \Sanofer A. Structure and Expression Characteristics of Bone Morphogenic Protein 3 in Fracture of Human Jaw Bones. Research J. Pharm. and Tech. 2018; 11(3): 1233-1236.

69.  Kumar MPS, Nandhini T. Mechanism of action of Bone Morphogenic Protein 3 in the maintenance of Tissue Homeostasis. Research J. Pharm. and Tech. 2018; 11(3): 1270-1274.

70.  Abood FM, Ghassan A, Abbas HD, Witwit LJ, Hindi NKK, Khmra HKAA, et al. The occurrence of alveolar bone resorption with oral bacterial infection. Research J. Pharm. and Tech. 2017; 10(6): 1997-2000.

71.  Strukov VI, Kislov AI, Eremina NV, Deriabina GP, Sergeeva-Kondrachenko MY, et al. The use of Bone Tissue Non-Steroid Anabolizators in Treatment of Osteoporosis. Research J. Pharm. and Tech. 2019; 12(5):2195-2199.


 

Selamat Hari Raya Idul Adha 1446 H / 2025 M

Selamat Hari Raya Idul Adha 1446 H / 2025 M Momen Idul Adha ( Udhiyah : hewan sembelihan) bukan sekadar perayaan, melainkan merupakan reflek...